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Stable continuous-wave single-frequency intracavity
frequency-doubled laser with intensity noise suppressed in

audio frequency region∗

Ying-Hao Gao(高英豪)1, Yuan-Ji Li(李渊骥)1,2,†, Jin-Xia Feng(冯晋霞)1,2, and Kuan-Shou Zhang(张宽收)1,2

1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
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We demonstrated a continuous wave (cw) single-frequency intracavity frequency-doubled Nd:YVO4/LBO laser with
532 nm output of 7.5 W and 1.06 µm output of 3.1 W, and low intensity noise in audio frequency region. To suppress the
intensity noise of the high power 532 nm laser, a laser frequency locking system and a feedback loop based on a Mach–
Zehnder interferometer were designed and used. The influences of the frequency stabilization and the crucial parameters
of the MZI, such as the power splitting ratio of the beam splitters and the locking state of the MZI, on the intensity noise of
the 532 nm laser were investigated in detail. After the experimental optimizations, the laser intensity noise in the frequency
region from 0.4 kHz to 10 kHz was significantly suppressed.

Keywords: continuous wave single-frequency intracavity frequency-doubled laser, noise suppression, power
stabilization, audio frequency

PACS: 42.55.Xi, 42.65.Ky, 42.50.Lc DOI: 10.1088/1674-1056/ab327b

1. Introduction

Continuous-wave (cw) single-frequency all-solid-state
lasers with the features of low noise, good beam quality, and
long coherent length have found applications in a number of
fields, including quantum information, cold atom physics, and
precise measurements.[1–9] In particular, a single-frequency
laser source with high power dual-wavelength output is more
beneficial to those investigations and measurements. For ex-
ample, in the generations of squeezed states and entangle-
ments at 1.06 µm, the pump filed, the local oscillator, the sig-
nal field for the optical parametric amplifier (OPA) or optical
parametric oscillator (OPO), and the auxiliary beams used for
cavity locking and phase locking can be provided simultane-
ously by a multi-Watts level single-frequency 1.06 µm and
532 nm dual-wavelength laser.[10] In precise distance mea-
surements based on heterodyne laser interferometer, the dual-
wavelength laser source can be used to compensate the mea-
surement error originated from the instability of the refractive
index of the ambient air, and the measurement uncertainty can
thus be improved comparing with the single-wavelength laser
based interferometer.[11] Moreover, single-frequency 1.06 µm
and 532 nm dual-wavelength lasers can also be used to gener-
ate the red-detuning[12] and blue-detuning[13] magneto-optical
traps for cooling and trapping the atoms, respectively.

Although single frequency lasers with high power
1.06 µm and 532 nm dual-wavelength output have already
been demonstrated by using the unidirectional traveling wave

cavity technique and the intracavity second harmonic gener-
ation technique,[14,15] noise reduction techniques and effec-
tive power stabilization methods for the dual-wavelength laser
sources are still waiting for a detailed study to meet the need
of the generation of stable squeezed states and multi-partite
entanglements in the audio frequency band, for the reason that
the intensity noise and the power fluctuation of the laser source
are directly coupled into the response of the photodetectors,
and the level of squeezing or entanglement at low frequency is
undulated and degraded.

Intensity noise reduction and power stabilization were
generally investigated simultaneously in previous works.
When a feedback loop based on a combination of an electro-
optical amplitude modulator (EOAM) or acousto-optic mod-
ulator (AOM) and a polarized beam splitter (PBS) was em-
ployed to stabilize the laser power, the laser intensity noise
could be suppressed at the same time.[16–18] Unfortunately,
both commercially available and custom made EOAMs or
AOMs may lead to a beam quality deterioration of the incident
532 nm laser and the maximum permitted power density of the
incident 532 nm laser for an EOAM is generally 0.5 W/mm2.
Apart from this method, the laser intensity noise can also be
reduced by utilizing a mode cleaner (MC) acting as a low-
pass filter,[19,20] but the noise reduction band of the method
using MC is restricted by the bandwidth of the MC. Unbal-
anced Mach–Zehnder interferometer (MZI) is a kind of device
that can be used for laser noise suppressing in some discrete
frequencies, but not in the audio-frequency region.[21,22] Con-

∗Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301401).
†Corresponding author. E-mail: liyuanji@sxu.edu.cn
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sequently, some other method should be developed to build a
laser source with low intensity noise in the Hz to kHz range
and good power stability, which is of benefit to the genera-
tion of squeezed state in the audio-frequency region that can
be used in the gravitational wave detection.

In this paper, we demonstrate a noise reduction and
frequency stabilization system for an intracavity frequency-
doubled laser with multi-Watts output. The configuration of
the intracavity frequency-doubled laser to be optimized is sim-
ply described in Section 2. In Subsection 3.1, the laser fre-
quency stabilization method based on controlling the linear
and nonlinear losses of the laser, as well as employing a feed-
back loop based on a stable frequency reference is introduced.
In Subsection 3.2, a balanced MZI and the feedback loop are
designed for reducing the intensity noise of the 532 nm laser in
the audio-frequency region without degrading the laser beam
quality. The influences of the frequency stabilization and the
crucial parameters of the MZI, such as the power splitting ratio
of the beam splitters and the locking state of the MZI, on the
intensity noise of the 532 nm laser are investigated in detail.

2. Experimental setup
The experimental setup of the high power cw single-

frequency intracavity frequency-doubled laser and stabiliza-
tion system is shown in Fig. 1. The pump source is a commer-
cially available laser diode (model: LIMO-A 1294, LIMO)
with the center wavelength of 808 nm and a maximal out-
put power of 60 W. Pump light passing through a fiber with
core diameter of 400 µm and a collimated lens (f1) is split

into two beams with orthogonal polarizations by a polar-
ized beam splitter (PBS1). The reflected pump beam and
the transmitted pump beam whose polarization is rotated
90◦ by a half wave plate (HWP1) are both focused into the
gain medium via two identical focusing lenses (f2). The gain
medium is an a-cut Nd:YVO4 crystal with a cross-section of
3 mm×3 mm×20 mm and the Nd concentration of 0.2 at.%.
Both end-faces of the Nd:YVO4 crystal are anti-reflection
(AR) coated at 808 nm and 1.06 µm (R808 nm < 3% and
R1.06 µm < 0.2%). To suppress the oscillation of the σ -
polarization mode and eliminate the etalon effect, a wedge
shape of 1.5◦ is cut on one end-face of the crystal with respect
to the c-axis of the crystal. For longitudinal mode selection, a
ring resonator composed of 6 mirrors (M1–M6) and an optical
diode formed by a HWP2 and a Faraday rotator based on a
terbium gallium garnet (TGG) are employed. The four plane
mirrors (M1, M2, M3, M6) are high reflection (HR) coated at
1.06 µm and high transmission (HT) coated at 808 nm (45◦,
R1.06 µm > 99.8%, and T808 nm > 95%). M4 and M5 are con-
cave mirrors with curvature radii of 100 mm, where M4 is
HR coated at 1.06 µm (R1.06 µm > 99.8%) and fixed onto a
pizeoelectric-transducer (PZT1) to control the cavity length,
M5 acting as the output coupler is partially transmission coated
at 1.06 µm. A type-I noncritical phase-matched LBO crys-
tal with dimensions of 3 mm×3 mm×18 mm is chosen for
intracavity frequency doubling because of its high damage
threshold and large temperature and angular acceptances. The
lithium triborate (LBO) crystal with two end-faces AR coated
at 1.06 µm and 532 nm (R532 nm,1.06 µm < 0.25%) is inserted

f1

M2

M4

M3

M1

PD3

PD2

PD1

PM1

PM2

M10

M11
M12

M13

MZI

HWP3

HWP4

PBS2

PBS3

DBS
OI1

HWP5

HWP1

Nd:YVO4

TGG

HWP2

LBO

f2f2

f1

M5

P
B

S
1

M6

M7 M8

M9

80
8 

n
m

 L
D TEC

PD4

PD5HWP8 PBS5BS

BD

OI2

EOM

HWP6

PBS4

QWP2

F-P1

F-P2

TEC

QWP1

80 MHzLPF

HV
P

M

+
D
I

AMP

dc

A B

A B

LPF

HV
P

+
D
I

PZT1

PZT2

PZT3

HWP7

+/-

SA

Fig. 1. Experimental setup of high power cw single-frequency dual-wavelength laser and stabilization system. LPF: low pass filter; M:
mixer; HV: high voltage amplifier; AMP: power amplifier; dc: direct current source; OI: optical isolator; EOM: electro-optic modulator; PID:
proportional-integral-derivative amplifier; A and B: negative power combiner; +/−: positive/negative power combiner; SA: spectrum analyzer.

094204-2



Chin. Phys. B Vol. 28, No. 9 (2019) 094204

into the ring cavity at the center of the M4–M5 arm. Both the
Nd:YVO4 and LBO crystals are tightly wrapped with indium
for reliable heat transfer and mounted in copper ovens that are
temperature controlled using a home-made temperature con-
troller with an accuracy of 0.01 ◦C. The whole cavity length is
490 mm.

The outputs of fundamental and second harmonic lasers
are isolated from the laser resonator using two optical isola-
tors (OIs) and separated using a dichroic mirror (DBS). The
1.06 µm laser is split into three parts using HWP3, HWP4,
PBS2, and PBS3. One portion is sent to a power meter (PM1,
model: LabMax-Top, Coherent). The other two beams are de-
livered to a scanning Fabry–Pérot (F–P1) interferometer (free
spectral range: 375 MHz; finesse: 350) for monitoring the
longitudinal-mode and to a frequency stabilization system for
stabilizing the frequency of the laser, respectively. The 532 nm
laser is injected into the power stabilization system based on
a MZI to reduce its power fluctuation and intensity noise.
The long-term power fluctuation and the intensity noise of the
stabilized laser are record using PM2 and a balanced detec-
tion (BD) system formed by HWP8, PBS5, and a pair of low
noise, broadband detectors (PD4 and PD5), respectively. The
common-mode rejection ratio of the BD system is higher than
40 dB. The sum and difference of the detected ac signals are
recorded by a spectrum analyzer (SA, model: N9030 A, Ag-
ilent). The sum signal gives the intensity noise power of the
laser and the difference signal gives the shot noise limit (SNL).

3. Experimental results and discussion
3.1. Mode-hop-free and frequency stabilized laser opera-

tion

Based on our previous work on the modeling of the suf-
ficient condition of stable single frequency laser operation
with energy transfer upconversion and excited stimulated ab-
sorption taken into account,[23] and considering the power
requirement for building the multi-partite entanglements and
squeezed states, an output coupler (M5 in the laser cavity)
with a transmission of 1.3% at 1.06 µm and a transmission
higher than 99.5% at 532 nm, as well as an LBO temperature
of 149.2 ◦C, which leads to a nonlinear conversion coefficient
of 1.346× 10−10 m2/W that is far beyond the critical value
of 0.373×10−11 m2/W, were chosen for the generation of the
dual-wavelength laser. Figure 2 shows the measured input–
output behavior of the laser and the longitudinal mode spec-
trum. The results indicate that the 532 nm and 1.06 µm out-
puts as high as 9.5 W and 3.1 W are achieved simultaneously
under 50 W pumping, and there is only one longitudinal mode
oscillated stably with no mode hop. The beam quality of the
dual wavelength lasers was also measured using a laser beam
quality analyzer (model: M2-200-BB; CCD: GRAS-20S4M-
C, Spricon), the beam quality factors of the 1.06 µm laser were

M2
x = 1.06 and M2

y = 1.05. The beam quality factors of the
532 nm laser were M2

x = 1.09 and M2
y = 1.12. The beam spot

radius of the 532 nm laser 0.3 m apart from the cavity was
about 360 µm, the near-field divergence angle of the 532 nm
laser was 5.9 mrad.
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Fig. 2. Output powers of 1.06 µm and 532 nm lasers versus incident
pump power. Inset: transmitted intensity of F–P1 interferometer.

By using a digital oscilloscope (model: DPO7245, Tek-
tronix) and a software based on Labview, the laser frequency
deviation from the initial frequency as a function of time was
measured and shown in Fig. 3(a). It can be seen that the
peak to peak frequency drift of the free running laser during
5 h was about ±4.8 MHz with no mode hop observed. To
further stabilize the laser frequency, a 200 mm-long confo-
cal F–P2 cavity, which was consisted with a tube-shaped in-
var body and two concave end mirrors with curvature radii of
200 mm, was built as a frequency standard. The finesse of
the cavity was measured to be 1000, leading to a linewidth of
375 kHz. Since a temperature fluctuation of the invar body as
low as 0.1 ◦C will cause the resonant frequency to drift within
20 MHz, an active temperature control system was designed
and employed to maintain the length of the F–P2 cavity. The
invar tube body was embedded in a copper sheath with an ex-
terior contour of cuboid, whose four side faces were in close
contact with eight pieces of thermoelectric cooler (TEC) mod-
ules (40 mm×20 mm), and covered by an intermediate pol-
yarylsulfone thermal insulation layer and an outermost alu-
minum shell acting as heat sink. With the help of a home-
made temperature controller, a long term temperature stabil-
ity of ±0.003 ◦C during 5 h was achieved. Based on this
robust frequency reference, Pound–Drever–Hall (PDH) fre-
quency locking was demonstrated via a frequency stabiliza-
tion loop (FSL) as shown in Fig. 1. The fundamental laser
beam was firstly phase modulated by an electro-optic modula-
tor (EOM) to generate frequency-modulated sidebands which
were 80 MHz apart from the carrier. Then the laser reflected
from the F–P2 cavity was detected by a photo-detector (PD2),
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and the detected signal was multiplied with the local oscilla-
tor’s signal using a mixer (M) with a phase compensation pro-
vided by a delay box. After being filtered by a low-pass filter
(LPF), the error signal was obtained and sent to a proportional-
integral-derivative (PID) amplifier and a high voltage amplifier
(HV) to drive the laser PZT1. Figure 3(b) shows the frequency
drifts of the stabilized laser during 5 h. Once FSL was work-
ing, the long term peak to peak frequency drift was less than
±1.5 MHz.
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Fig. 3. Frequency drift of (a) free running laser and (b) stabilized laser
in 5 h.

3.2. Intensity noise suppression and power stabilization

To stabilize the output power and suppress the intensity
noise of the 532 nm laser, a MZI and the corresponding power
stabilization loop (PSL) as shown in Fig. 1 were used. The
MZI was composed of two HR coated mirrors M12, M13 and
two beam splitters (BSs) M10, M11 with a beam splitting ratio
of R at 532 nm. The mirror M12 was attached on a PZT3 for
tuning the optical length difference (OPD) between the two
arms of the MZI. Then the difference between an adjustable
low noise direct current (dc) signal and the low frequency
part (dc to 40 kHz) of the detected signal from PD5 was fil-
tered by a LPF and sent to a PID and a HV to generate the
driving signal, which was finally fed back to PZT3 for lock-
ing the OPD. When the voltage of the dc signal was adjusted
and the parameters of the proportional-integral-derivative am-
plifier were tuned accordingly, the transmission of the stabi-
lized laser passing through the MZI (Tlock) can be changed.
To investigate the influence of the MZI parameters, e.g., Tlock

and R, on the laser noise properties in the audio frequency
region (0.4–30 kHz), the same settings were adopted during
the following measurements: Firstly, the laser power incident
on PD4 and PD5 was kept at 24 µW. Secondly, the sectional
measurements in four Fourier frequency windows including
0.4–0.8 kHz, 0.8–3.2 kHz, 3.2–10 kHz, and 10–30 kHz were
carried out for each noise spectrum, and the resolution band-
widths (video bandwidths) of SA in the respective regions
were set as 2 Hz (2 Hz), 4 Hz (4 Hz) 16 Hz (4 Hz), and
16 Hz (4 Hz). Thirdly, to reduce the measurement errors,
each data point in Figs. 4 and 5 was the averaged value of
the data recorded in 400, 400, 800, and 800 measurements for

the four Fourier frequency windows. Fourthly, since the elec-
tronic noise was at least 10 dB below the SNL in the frequency
region, it had already been subtracted from the measured data.

To investigate the influence of Tlock on the laser intensity
noise property, the BSs with R = 50% were used to build the
MZI, and the noise spectra were recorded when the OPD of the
MZI was locked at different Tlock, as shown in Fig. 4. Curves
(i) and (ii) are the SNL and intensity noise of the 532 nm laser
before the MZI. It can be seen that in the audio frequency re-
gion from 0.4 kHz to 30 kHz, the intensity noise of the laser
was always higher than the SNL with a difference ranging
from 12 dB to 34 dB. Once the 532 nm laser was stabilized
using the MZI and PSL, a noise transfer phenomenon was ob-
served. Curves (iii), (iv), and (v) in Fig. 4 are the intensity
noises in the laser output from the locked MZI when Tlock is
45%, 65%, and 85%, respectively. It can be seen that most
of the intensity noise in the laser output from the MZI in the
frequency region from 0.7 kHz to 10 kHz was suppressed in
all the three cases, while the intensity noise in the frequency
region from 10 kHz to 30 kHz was raised up beyond the in-
tensity noise of laser before MZI. Moreover, the amount of
noise suppression in the frequency region of 0.7–10 kHz can
be adjusted by controlling the locking position of the MZI. As
shown in Fig. 4, when Tlock was raised up from 45% to 85%,
the intensity noise of the laser from 0.7 kHz to 10 kHz was
closer to the SNL. In particular, in the analysis frequency re-
gion from 0.7 kHz to 3.7 kHz, the intensity noise of laser in
the case of Tlock = 85% was more than 5 dB below that in the
case of Tlock = 45%.
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Fig. 4. Intensity noise of laser as a function of analysis frequency when
R = 50%.

To test the influence of the beam splitting ratio on the in-
tensity noise of the 532 nm laser, three MZIs with R = 90%,
75%, and 50% were used for 532 nm laser stabilization. Fig-
ure 5 shows the measured intensity noises of the laser before
the MZI and the stabilized lasers output from the MZIs locked
at the same Tlock of 85%. Curves (i) and (ii) are the SNL and
intensity noise of the laser before the MZI. Curves (iii), (iv),
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and (v) are the intensity noises of the lasers output from the
locked MZIs when R is 50%, 70%, and 90%, respectively.
It can be seen that when the BSs with R = 90% were used
to build the MZI, the intensity noise of the stabilized laser in
the frequency region from 0.4 kHz to 3 kHz was further sup-
pressed in comparison with the case of R = 50%, while the
intensity noise of the stabilized laser in the frequency region
from 3 kHz to 30 kHz became higher.
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Fig. 5. Intensity noise of laser as a function of analysis frequency with
different R of MZI at Tlock of 85%.

The influence of laser frequency stabilization on the in-
tensity noise suppression was also measured and shown in
Fig. 6. Curves (i) and (ii) are the SNLs of the laser with and
without laser frequency stabilization, respectively. Curves (iii)
and (iv) are the intensity noises of the laser before the MZI
with and without laser frequency stabilization, respectively.
Curves (v) and (vi) are the intensity noises of the lasers out-
put from the locked MZIs with and without laser frequency
stabilization when R is 90% and Tlock is 85%, respectively. It
can be seen that the laser frequency stabilization had nearly no
influence on the measured SNL and the intensity noise of the
laser before MZI. But the intensity noise of the laser after MZI
showed significant suppression in the frequency region from
0.4 kHz to 1.3 kHz once the laser was frequency stabilized.
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From the above experiment results, the best noise perfor-
mance was achieved when the laser was frequency stabilized,
the MZI with R = 90% was employed and locked to the state
of Tlock = 85%. The performance of laser power stability at
the same condition was also measured, as shown in Fig. 7.
The measured peak to peak power fluctuation of the 532 nm
laser before MZI was less than ±0.7% for a given 5 h. As a
comparison, when the 532 nm laser was stabilized via an MZI,
the 532 nm output power from the locked MZI was 7.5 W, and
the measured peak to peak power fluctuation of laser was less
than ±0.2% for a given 5 h.
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Fig. 7. Power fluctuation of the 532 nm laser before MZI (0–5 h) and
output from a locked MZI (5–10 h).

4. Conclusion and perspectives
We built up a high power mode-hop-free cw single-

frequency intracavity frequency-doubled Nd:YVO4/LBO
laser, the output power and intensity noise in the audio fre-
quency region of 532 nm laser were stabilized and suppressed
via a locked MZI. By utilizing the resonant frequency of a
temperature controlled confocal F–P cavity as frequency stan-
dard, the frequencies of the dual-wavelength laser were locked
via PDH technique, and the measured frequency drift of the
1.06 µm laser was better than ±1.5 MHz for a given 5 h. Fur-
thermore, a control system based on MZI was designed and
used to improve the power stability and the intensity noise
property of the 532 nm laser. When the control system was
working, the measured power fluctuation was less than ±0.2%
during a given 5 h, and the intensity noise was significantly
suppressed in the audio frequency region by optimizing the
locking level and the beam splitting ratio. Finally, a robust cw
single frequency laser operation with 532 nm output of 7.5 W
and 1.06 µm output of 3.1 W was achieved. The stable low
noise high power cw single-frequency intracavity frequency-
doubled laser can satisfy the experimental requirements for the
generation of audio frequency band squeezed state and multi-
partite entanglement. The laser can also be applied in the fields
of quantum information and precise measurements.
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